Following the 4Rs of fertilizer management ensures that your pastures and hay lands will remain perennial winners.

M.D. Timmerman, M.Sc.

Agri-Ecosystems Specialist

Manitoba Agriculture

KNOW WHAT YOU HAVE AND USE IT WISELY

If you don't know, find out with data, published or newly collected, and expertise as is available.

Cherishing, and exploiting precious, abundant resources

Soil Information & the 4Rs

Climate & Weather in the Great Plains Region

Soil Zones of the Canadian Prairies

Historically higher precipitation

Water availability to the crop dictates its response to applied N.

Organic C and Organic Matter Levels in Manitoba Soils

ADDRESS 4R LIMITATIONS

Or that magical fertilizer will not perform any magic!

Eroded landscapes are colour coded

Replenish with manure or soil from lower slopes

Indicator weeds – acidic soil

Devils paintbrush (orange hawkweed)

Indicator weeds – compaction

Indicator weeds – salinity

To achieve perennial winners, apply

the Right source
at the
Right rate,
Right time,
Right place.

RIGHT SOURCE

If it's available...and economical...

Agriculture and Climate Change

Agricultural GHG Emissions

Is this a problem or an opportunity?

Relative contributions of Manitoba GHG source categories from 1990 to 2013.

Adding N Fertilizer Causes N₂O Emission

corn faba s. wheat rapeseed barley s. wheat

Glenn et al. 2012 Ag
For Met 166-167:41-49
Stewart 2011 MSc
Hanis PhD in progress

How much does N₂O from agricultural soils contribute to GHG emissions?

Source: Environment Canada. National Inventory Report 1990-2011.

Synthetic Fertilizer Formulation

- Granular urea most prevalent
 N source
- Enhanced Efficiency Fertilizer (EEF)
 - Stabilized N incorporate inhibitors to slow transformation of urea and/or NH₄⁺ (SUPERU™)
 - Controlled release N release based on soil temperature and moisture (Environmental Smart N, aka ESN)

Performance of Various N Products

Σουρχε: Ωεστχο

At fertilizer addition:

	Temp (°C)		VMC (%)	
	Car	Oak	Car	Oak
2011	~20	~20	~25	~40
2012	~12	~12	~20	~20

High moisture and temp.

More N₂O production

Broadcast with incorporation

N₂O Emission losses in 2009 at Glenlea

Urea and SuperU

Precipitation (mm)

Dairy Manure and ESN

Control - No N

Is there too much P in Manitoba's soils?

Too much phosphorus in Manitoba?– only in a few places.

Too much phosphorus in Manitoba?– only in a few places.

RIGHT RATE

What nutrient is missing?

- a. Nitrogen
- b. Phosphorus
- c. Potassium
- d. Sulphur

Forage fertility summary

- Yield & Removal
- **▶** Soil test
- tissue test
- feed test (?)

What's your hay worth?

Every ton of alfalfa removes:

$$(x 53^{\phi}/lb = $32)$$

$$(x 57^{\phi}/lb = $9)$$

$$(x 38^{\phi}/lb = $23)$$

$$(x 4 | f/|b = $2)$$

\$66

\$34

Fall 2015 pricing

HER USKYLENY SELECT

Nutrient In The Soil		Interpretation				1st Crop Choice			95	2nd Crop Choice			3rd Crap Choice		
		VLOW	LOW	Med	ifigh		Grase	/Pasture							
0-6" 6-24"	4 lb/ac 12 lb/ac						Aler	D GOAL		YIELD GOAL			VIELD GOAL		
4.24	12 10/11	***	8			1 Tons									
0-24"	15 lb/ac					500	GESTE	O GUIDELINE	5	SUGGESTED	GUIDELINE	s	SUGGES	AED GRIDE	LINES
Micae							aro	adcast							
						LB/A	CRE	APPLICAT	ION	LBJACRE	APPLICATI	ON	LB/ACR	APPL	CATION
Olsen Phospriums	3 ppm	*****				ONE	36			N			rv		
Putassium)	91 ppm			••		P ₂ O ₅	13	Broadca	st	P ₂ O ₅		P	0.		
						K/O	12	Broadca	st	K ₂ O		Ж	,O		
Chloride	SALW OR V					C				Cr			E1		
0-6" 6-24"	10 lb/ac 72 lb/ac	The second second	The second of			5	10	Broadca	st	5			5		
Boron						В				В			9		
zinc	0.87 ppm					2n	0			Zn		عالد	5n		
tron						Fe				Fe			e		
Manuelmen						Mn		-		Mrt		1	dn.		
Соррег	0.6 ppm			••		Cu	0		\neg	Cu			ou l		
Magnesum						2232		-	-			-1-	-		-
Odeman						Mg				Mg			ng .		
50dium						Limit				Lime		L)	me		
Drg Matter	5.2 %	++			***		Carl		Cation Exchange % Bas		e Satur	Saturation (Typical Range)			
Carbonate(CCE)						Soil pH		Buffer pH		Capacity	% Ca	% Mg	% K	% Na	% H
0-6" 6-24" Sot, Salts	0.27 mmho/cm 0.32 mmbo/cm	FIGURE CO.				0-6" 8	occirc. L								

Crop 1: Many crops may respond to a starter application of P & K even on high soil tests. Crop Removal: P205 = 12 K20 = 45 AGVISE Scondcast guidelines will build P & K test levels to the high range over several years.

Alfalfa responds to fertilizer.

Nutrient uptake and removal by alfalfa – clay loam soil (4.0 vs 5.3 ton/ac)

5 yr-ave on sandy loam soil (Bailey, MB) +F = fertilized with 0 - 54 P_2O_5 - 107 K_2O - 27S

Nutrient uptake and removal by alfalfa – sandy loam soil (0.8 vs 4.7 ton/ac)

+F = fertilized with $0 - 54 P_2O_5 - 107 K_2O - 27S$

P "dosage" influences yield response in alfalfa (one-time application vs. annual application)

Malhi et al., 2001; Alberta

Fertility Indicator?

Fertility Indicator?

Cumulative alfalfa yields in 2009-10 at a responsive and a non-responsive site, following a single fertilization in October 2008.

2010 forage yields, averaged across four sites, following fertilization in October 2009.

200 lb P₂O₅/ac vs 0 (Interlake P Ramps)

Ηεασψ αλφαλφα χροπ ωιτη λοδγινγ

Πρεδομιναντλψ γρασσ, βαρε γρουνδ

Did it pay to fertilize at Arborg? Yes, it did.

Fertilizing deficient fields with K increases alfalfa yield, protein and K content

Initial soil K = 14-180 ppm.

Plots fertilized annually with 60 lb P2O5/ac and 30 lb S/ac.

Soil testing will indicate the presence of low K soils.

High yields of forages will deplete soils quicker than other crops and this should be monitored through soil sampling.

Applying S on deficient soils increases alfalfa yield, protein and S content

Five station years on a Grey Wooded soil in Manitoba. Initial soil S = 13 lb/ac. Plots fertilized annually with 60 lb P_2O_5 /ac and 30 lb K_2O /ac.

MASC Analysis Risk Area 4 (Brandon), 2010-2014

	ALF	ALFA	ALFALFA	A-GRASS	GRASS		
	ACTUAL APPLIED	BALANCE	ACTUAL APPLIED	BALANCE	ACTUAL APPLIED	BALANCE	
YIELD							
ton/ac	2.77		2.36		1.8		
N	13	-148	26	-83	40	-21	
P2O5	28	-11	20	-8	19	1	
K2O	28	-138	16	-104	30	-47	
S	11	-6	9	-3	10	3	

Nutrients in lb/ac

Fertilization Guidelines for Mixed Stands

Source: Dr. L. Bailey, CDA, Brandon

30 feet between bales

25 feet between bales

A forage test tells us:

3) 291-2022 FAX 3) 329-9266 4) 514-3322 FAX

456275

Dry Result

0.0

100.0

3.09

Producer:

Sample Description: 2ND CUT ALFALFA

Sender Sample Number: 1

Phone: 889-5699

Client:

MB FORAGE COUNCIL GREEN GOLD PROJECT

Fax:

As Received

14.0

86.0

2.65

0.24

745-2299

Address:

Moisture %

Dry Matter %

Crude Protein %

Potassium (K) %

Sodium, (Na)

ranesium (Mg) %

WINNIPEG, MB

R3K 0M1

N content: > 2.5%

= CP/6.25 = 3.55%

19.1 22.2 Heat Damaged Protein % 0.9 1.1 Available Protein % 19.1 22.2 Soluble Protein % Percent Soluble Digestible Protein (est.) % 13.1 15.2 Acid Detergent Fiber % 28.4 33.1 Neutral Detergent Fiber % 36.0 41.9 Total Digestible Nutrients (TDN est.) % 51.4 59.8 Net Energy for Lactation Mcal/kg 1.16 1.35 Net Energy for Maintenance Mcal/kg 1.21 1.40 Net Energy for Gain Mcal/kg 0.61 0.70 Digestible Energy ModUl 2.6 Non Caructural Carbohydrates % 212 20.8 Relative Feed Value (RFV) 140.1 Phosphorus (P) % 0.23 0.27 Calcium (Ca) % 1.23 1.43

- P content : > 0.25
- K content: > 2.0

Crop	P ₂ O ₅ Removed (lb/bu or lb/ton)	Example Yield	P ₂ O ₅ Removed (lb/ac)
Spring Wheat	0.59	40 bu/ac	23 (21-26) *
Oats	0.26	100 bu/ac	26
Canola	1.04	35 bu/ac	41
Flax	0.65	24 bu/ac	15
Barley grain	0.42	80 bu/ac	34
Barley silage	11.8	4.5 tons/ac	53
Corn grain	0.44	100 bu/ac	44 (39-48)
Corn silage	12.7	6 tons/ac	63

*NOTE: these values are the mid-points of ranges

Crop	P ₂ O ₅ Removed (lb/bu or lb/ton)	Example Yield	P ₂ O ₅ Removed (lb/ac)
Sunflower	0.32	50 bu/ac	16*
Edible beans	0.014	1,800 lb/ac	25
Soybeans	0.84	35 bu/ac	29
Peas	0.7	50 bu/ac	35
Potatoes	1.85	20 tons/ac	37
Alfalfa hay	13.8	5 tons/ac	69
Grass hay	10.0	3 tons/ac	30

^{*} NOTE: these values are the mid-points of ranges

Manitoba Fertilizer Recommendations based on soil tests

Appendix Table 17. Phosphorus recommendations for field crops based on soil test levels and placement.

Soil Phosphorus (sodium bicarbonate or Olsen P test)		onate or	Cereal	Corn Sunflower	Canola Mustard Flax		Buckwheat Fababeans		Potatoes		Peas Lentils Field beans! Soybeans!		Legume forages		Perennial grass forages	
ppm	lb/ac	Rating	S ¹	Sb ²	8)	\$1	B3	51	B)	bbit	B3	S ^t	seeding PPI ^s	Est. stand BT ^s	seeding PPI	Est. stand BT ⁶
0	0	VL.	40	40	40	20	40	20	55	110	40	20	75	55	45	30
	-	2//	174	100	1000	- 22	0000	350	MAN CO	201	- 10		7	0.50	100	200
5	10	L	40	40	40	20	40	20	50	100	40	15	75	55	45	30
	100	-	122	100	35	Toward I	100	12/21	Union	104	36	241		-		- 20
10	20	М	30	30	30	20	30	20	45	90	30	10	60	40	30	20
	25	M	20	20	20	20	20	20	40	80	20	10	50	35	20	15

For very low P soil = P removal of a 3-4 t/ac crop For medium P test = P removal of a 2-3 t/ac crop For high P test = P removal of <2 t/ac crop

DESCRIPTION PROPERTY IN

RIGHT TIME

Current Radar

Region: United States

Pan & Zoom

■ Stop Animation

Toggle National and Regional Views

Click the blue-button above to toggle between National/World and Regional views, View persists until toggle back, For adding explicit book-marks to directly access preferred weather maps, click here to visit our FAQ page.

Water erosion does occur.

Declining area of fallowed land in Manitoba

Stats Canada data through 2006

Loss of P in Erosion Sediment

Three MB sites on 9% slopes, 3 yr average (1988-90)

* Mostly caused by a single 4 inch rainfall event

Hargrave and Shaykewich, 1991

Erosion risk found not to be related to river P concentrations in 14 regional Manitoba watersheds

Map of flood and high flow condition (United States)

		ion - Percent	ilo diadoco
95-98		>= 99	River above flood stage
Δ	Streamgage flood stage		

...it is just plain different here.

Runoff and P transport

Most P loss on the Prairies occurs during **snowmelt**

Lake Winnipeg Stewardship Board Report, December 2006

When is winter?

WEBs* results for export of Total Nitrogen in runoff at Deerwood, MB

Watershed Evaluation of BMPs*: U of M, AAFC and Env't Cda

WEBs results for export of Total Phosphorus in runoff at Deerwood, MB

Watershed Evaluation of BMPs*: U of M, AAFC and Env't Cda

SURFACE WATER MANAGEMENT SOLUTIONS

SURFACE WATER MANAGEMENT SOLUTIONS

Nothing is as simple as it seems

Conclusion

- manage

the runoff

and the

vegetation

SURFACE WATER MANAGEMENT SOLUTIONS

Nothing is as simple as it seems

Conclusion - manage the vegetation and runoff

Riparian areas are not effective in filtering sediments and nutrients in runoff from land

RIGHT PLACE

Placing P in the soil reduces P loss from a single immediate runoff event

Concentration of dissolved and total P in runoff from a clay loam soil in North Carolina, from artificial rainfall immediately following application of superphosphate fertilizer. Incorporation was to a depth of 5 inches by rotary tillage following application. Data from Tarkalson and Mikkelson (2004).

Slide from Dr. T. Bruulsema, IPNI

Rating Nitrogen Application Options

Alfalfa benefits from banding directly over P fertilizer

Banded P

(Heard, OMAFRA)

Lateral distance in inches between seedlings and fertilizer band

Tesar, Michigan, 1984

Influence of Nitrogen, Phosphorus and Potassium on Seedling Vigour

Research from as
early as 1950 in
Ohio showed P
banded 1-2"
below the seed
improved growth
and establishment
of forages

MAFRI guide:

- 55-75 lb P2O5/ac for legumes
- 30-40 lb P2O5/ac for grasses

Effect of seed-placed MAP (11-52-0) on alfalfa establishment

Heard, 2001 Crop Diagnostic School demonstrations

Band Injection of P into Alfalfa

- **■** Band Clay
- ☐ Bcst Clay
- Band Sand
- **■** Bcst-Sand
- banded dry fertilizer 1-2" deep into alfalfa with double disk drill
- some alfalfa injury from banding on sand
- P increased yield by 47% on clay, little on sand
- no advantage to banding K

Simons, Grant and Bailey - AAFC-Brandon

Band Injection of P into Alfalfa

Malhi - Alberta (1999)

- 1. Soil test or start with forage analyses2. Try to meet removal amounts (esp P)
 - 3. Avoid late fall P&K applications and possible run-off

Taking it home...

- To fully exploit the potential that forages and grasslands have to offer (and not squander a glorious opportunity):
 - Right Source consider all options: commercial fertilizer, manure, legumes...
 - Right Rate if national, regional and local production objectives are to be met...
 - Right Time follow the law because it just makes sense on so many levels...
 - Right Place efficiency is all the more critical if returns on investment are, well...

