Forage Inventory Management

Les Halliday PhD, PAg

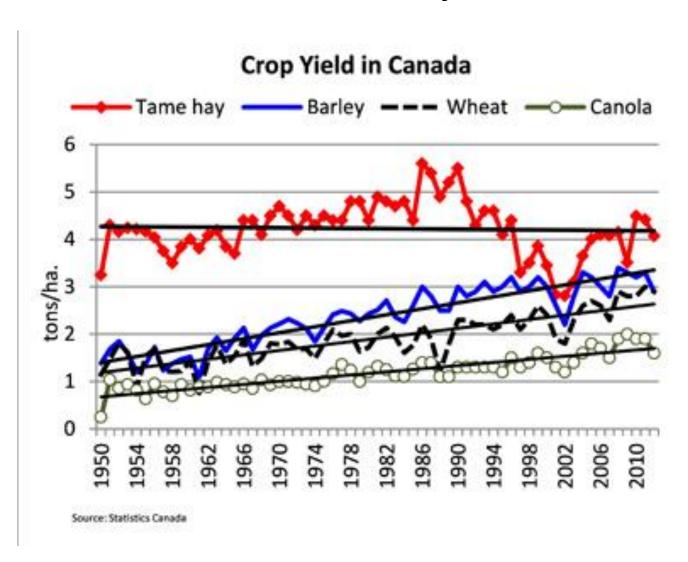
CFGA Conference

November 14, 2019

Why does it matter?

- Impact on profitability \$
 - Quantity
 - Available for intake
 - Spoilage/waste
 - \$ purchase more or \$ sell more
 - Quality
 - Feeding the to stage of production
 - Dry vs lactation vs young feeder vs herd bull
 - "Measure it to manage it" approach"Measure it accurately"

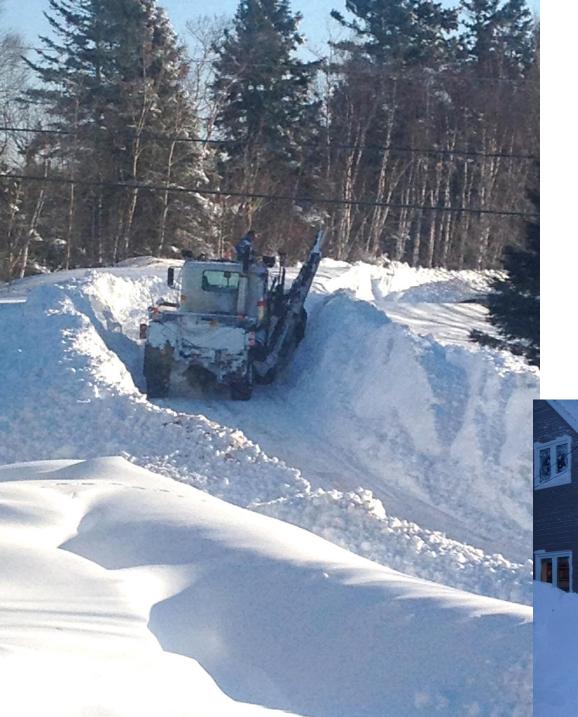
Required forage


		Weight	Intake	Days on	Required	Required	Intake lb/d
	#	Lbs	% BW	Feed	Lbs DM	Tonnes	as fed 55 DM
Cows	50	1450	0.025	210	380625	173	66
Bulls	2	2000	0.025	210	21000	10	91
Heifers	6	750	0.027	210	25515	12	37
Calves	42	550	0.028	30	19404	9	28
				Total	446544		

- Waste spoilage (mold) and feeding 10,15,20%
- Supplementation
 - Grain, protein etc
- Quality
 - For each class of animal

Quantity

- Based on previous years, require x,y,z
 - -750 t
 - 750 round bales
 - Previous year carry-over ??
 - Emphasis was on volume
- 5-10 years ago ample forage supplies around
 - \$ purchase \$15-20/bale


Quantity

Yield Concerns

- Climate highly variable in all area of Canada
 - Winter kill Alfalfa, clovers
 - Freeze thaw cycles in January
 - Frost heaving in Spring
 - Losses variable 10 80%
 - Quality and quantity
 - More interest in annuals
 - Pea/Oat
 - Sudan/Sorghum
 - Corn silage, cob meal & HMC

Typical PEI Nor'easter

Yield Concerns

- Pastures and conserved forage land
- Crop rotations cash crops
 - Potatoes, corn, barley & wheat
 - Effect on soil health OM
 - Pest issues wireworm
 - Forage land —— Buckwheat or Brown mustard
 - 15,000 20,000 acres

Forage Yield

- Who measurers yield at field level?
 - How accurate DM t/acOR
 - # bales/ac 4, 6, 8, 10 size and weight
 - Size of bunkers, piles or bags
 - Size of tower silos
- Proactive on yield and quality

Tools of the trade

Soil probe

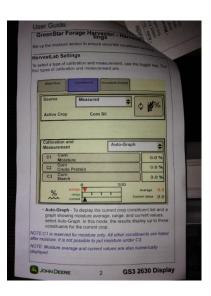
Forage probe

Clip Board

Markers

Density probe

Weighing equipment



Yield

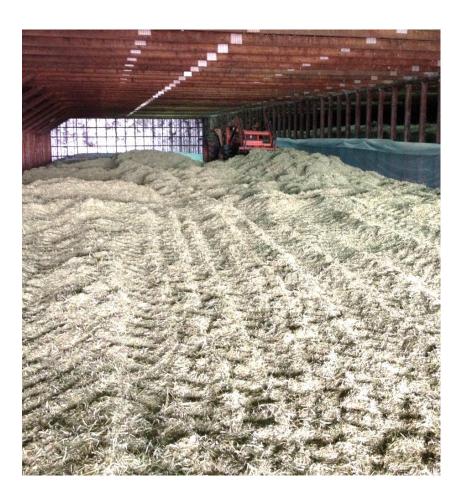
- Chopped silage
 - Yield & Quality monitors
 - Harvester or mower
 - Follow calibration

directions

Yield

 $f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$

- No yield monitor
- Recording loads in from each field?
- Indication of forage stand health
 - soil probe
- Volume calculations not complex
- Are you measuring density?



Packing

- Weight, time and patience
- Chop length
 - Harvester DM sensor
- Uneven packing within a bunk
 - Variations on palatability

Packing and Inventory

Table 1. Dry matter loss as influenced by silage density. (Ruppel, 1992)

Density (lbs of DM/ft³)	DM loss at 180 days (% of the DM ensiled)				
10	20.2				
14	16.8				
15	15.9				
16	15.1				
18	13.4				
22	10.0				

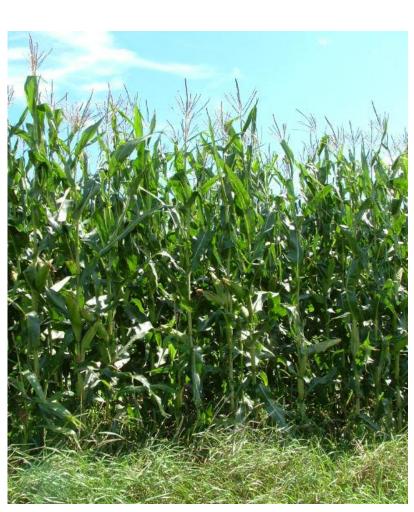
Forage yield

- # bales ?
- How much does a bale weigh?
- DM content?

Forage waste

- Harvested vs Intake
 - Losses, invisible and visible

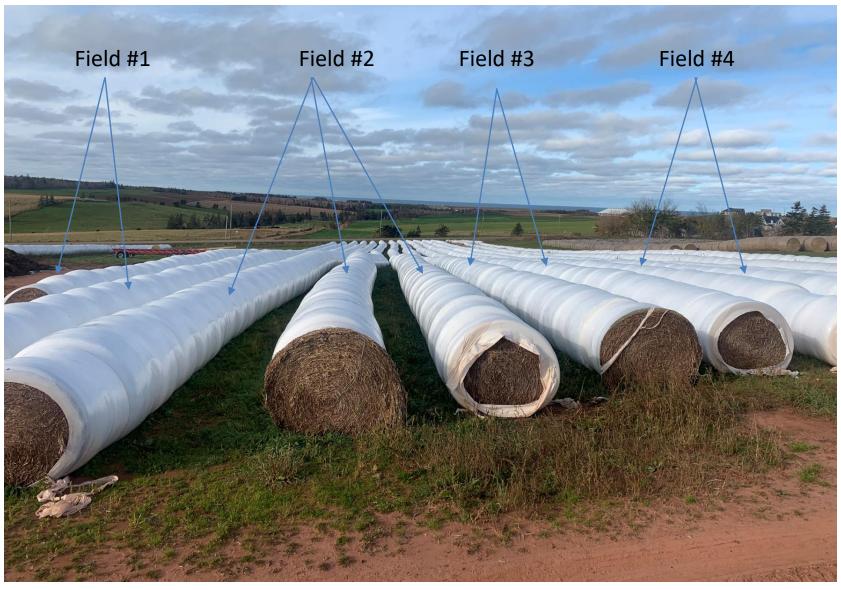
Forage Waste


Waste reduction

Quality

- Do you test feed and soil and how often
- Do you field records
 - Forage composition
 - Quantity #
- Storage map for bales
 - What when how many
- Bunker/tower/bag silage
 - Field source
 - Load count
- What do you do with the analysis

2019 crop year


- How to partition forages
 - Lactating
 - Late gestation
 - Dry
 - Age
- Supplementation
 - Grains, proteins, min/vits
 - Are By-products suitable

Animal Performance

Sampling lots?

	Resu	11.7	
Analyses	Dry	As Fed	Units
Forage Type	Mixed Silage		•
*Ash	7.47	2.85	%
*Dry Matter		38.1	%
Protein NIR	9.60	3.66	%
Net Energy Lactation (fact)	5.92	2.26	MJ/kg
Net Energy Lactation Mcal/100lb	59.9	22.8	Mcal/100lb
Net Energy Lactation Mcal/kg	1.32	0.503	Mcal/kg
Net Energy Lactation MJ/kg	5.53	2.11	MJ/kg
Crude Fat NIR	4.00	1.52	%
Acid Detergent Fiber NIR	35.1	13.4	%
Non Structural Carbohydrates	30.0	11.4	%
IF .	57.8	22.0	%
Potential Digestibility	80.4	30.6	%
NDF(OM) NIR	50.7	19.3	%
*Sodium	0.0316	0.0120	%
*Calcium	0.501	0.191	%
*Phosphorus	0.240	0.0915	%
*Magnesium	0.165	0.0629	%
*Potassium	1.92	0.732	%
Sulfur	0.144	0.0549	%
ADFN NIR	10.4	3.96	%
A Fraction	42.7	16.3	%
B Fraction	17.3	6.59	%
D Fraction	10.9	4.15	%
G Fraction	29.6	11.3	%
K2	4.66	1.78	
K9	1.95	0.743	
Acid Detergent Fiber Lignine NIR	4.70	1.79	%
Lactic Acid	1.47	0.560	%
Acetic Acid	1.49	0.568	%
Forage Quality Index	123	46.9	
Relative Feed Value	109	41.5	
NDF-ADF Spread	15.6	5.95	%

Chemical analysis can be highly detailed depending on the lab

Total Mixed Ration

Tool to provide a balance of nutrients to animals using multiple feed sources – by-products

Caution

- Used to disguise unpalatable feeds
- Over processing
- Feed separation related moisture content

A Tool for Evaluating Feed Test Results

This tool evaluates the ability of a single feed to meet basic nutritional requirements of different classes of cattle in different stages of production under normal circumstances. These results will not apply if cows are in poor condition, if the weather is extremely cold, wet, or windy, nor does it account for the extra energy expenditure associated with swath grazing. It is not intended for use in ration balancing, but rather to alert you to potential issues with individual feed ingredients. It is strongly recommended that the user seek advice from a qualified professional to develop a balanced ration, or familiarize yourself with ration balancing software like CowBytes.

Step 1: Select Cattle Class - options are Backgrounding, Replacements, Mature Cows, and Mature Bulls.

Step 2: Select Average Daily Gain in lbs/day (for Backgrounding), or Stage of Production (for Replacements, Mature Cows, Mature Bulls).

Step 3: Enter Weight of cattle in lbs - acceptable ranges for Growing and Finishing are between 500 and 1000 lbs; for Replacements are 850 to 1150 lbs, for Mature Cows are between 1100 and 1600 lbs, for Mature Bulls are between 1800 and 2500 lbs; mid-ranges will round down, e.g. 550 rounds to 500.

Step 4: Enter your own feed test results on a dry matter basis, starting with Dry Matter (DM,%).

Mature Cows	•								
Select Stage of	of Production								
Lactation	•								
Enter Weight * Enter weight Enter Test Fee	between 1100 and 1 1400								
Dry Matter (DM,%)	Total Digestible Nutrients (TDN, %)	Crude Protein (CP, %)	Calcium (Ca,%)	Phosphorus (P, %)	Ca:P Ratio	Potassium (K, %)	Magnesium (Mg, %)	Tetany Ratio	
50 %	60 %	11.5%	0.65%	0.2 %	3.25:1	1.9 %	0.12%	1.15:1	

Calculate Single Feed Data

Interpretation:

Select Cattle Class

Suitability of the feed is indicated by a color coded response. Green indicates that the nutrient is adequate to meet nutritional requirements. Yellow Is within +/- 2.5% of TDN requirements, +/- 5% of CP requirements and 0.05% below mineral requirements..

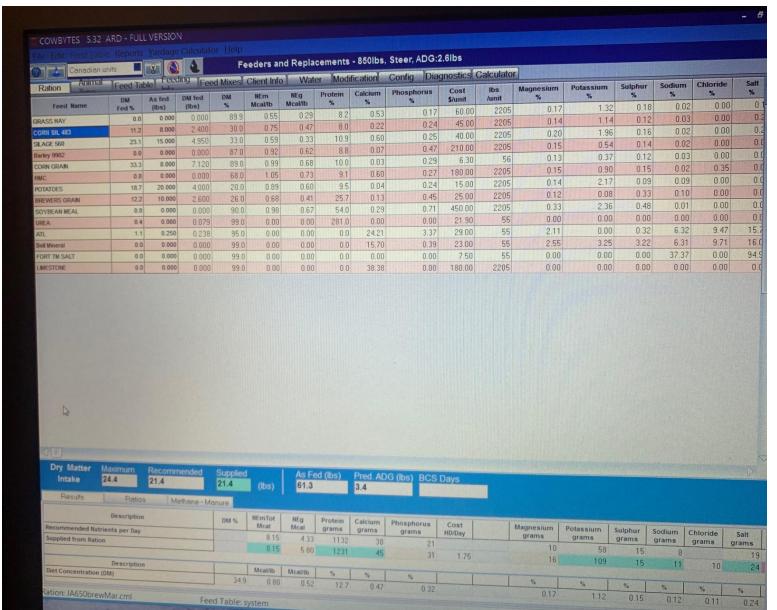
Red indicates the feed does not meet animal requirements.

Way of flagging issues

Call nutritionist before too far in to a problem

Evaluating other feeds

Bold green cells in b	orders are for	user inputs.
-----------------------	----------------	--------------


Reference Feeds:

Name	\$/tonne, As Fed	DM, %	TDN (% DM basis)	CP (% DM basis)	
Barley Grain	\$ 240.00	87%	80%	12.00%	
Soybean M	\$ 580.00	88%	84%	54.00%	

Target Feeds:

	Asking Price				Nutr	ient Value	Impact on	feed cost
	\$/tonne, As Fed		DM, % TDN (% DM basis)		\$/tonne, As Fed		\$/tonne, As Fed	
RBS	\$ 100.00	60%	52%	12.50%	\$	132.75	Positive	32.75
RBS	\$ 80.00	40%	50%	8.50%	\$	72.53	Negative	(7.47)
Corn Silage	\$ 55.00	35%	64%	9.00%	\$	75.37	Positive	20.37
Pea Screen	\$ 170.00	88%	60%	16.00%	\$	237.04	Positive	67.04
Potatoes	\$ 15.00	20%	72%	8.50%	\$	45.55	Positive	30.55
Extruded SB	\$ 552.00	94%	88%	42.00%	\$	526.82	Negative	(25.18)
Cob meal	\$ 120.00	65%	78%	9.00%	\$	159.17	Positive	39.17
Corn grain	\$ 325.00	90%	90%	9.50%	\$	247.19	Negative	(77.81)
Canola Meal	\$ 460.00	90%	75%	40.00%	\$	463.66	Positive	3.66
DDGS	\$ 340.00	90%	74%	30.00%	\$	381.45	Positive	41.45

Rations

Summary

- Forage inventory not just about volume
- Proactive in yield monitoring
- Begins with the soil
- Partition forage to stage of production
- Spoilage and waste are the enemy
- Information is king document
- Little things make a big difference
- Plan early & plan often
- Opportunity feeds usually available
- Efficiency and margins should be on your side

