Mowing & Drying

Dr. Dan Undersander University of Wisconsin

Topics to be covered

- Mower setting effect on forage species mix
- Importance of rapid drying for first 15% water loss
- Conditioner settings
- Value of wide swath on drying

Mowing

No difference in stand life due to mower type

Effect of mower type on alfalfa stand and yield						
	Sickle bar	Disc mower				
Yield, t/a last cut	1.47	1.49				
Stand, plt/ft ²	6.2	6.2				

Cutting height 3" for alfalfa and 3.5 to 4" for grass

Cutting height effect on stand

Cutting height effect on stand

Timothy stores energy for regrowth in corms at base of stem

Alfalfa regrowth begins to occur at early flowering

Operation of Disc Mowers

- Improved cut in low-yielding forage by lowering RPM at same ground speed
- Replacing conventional knives with 'high lift' knives helped cut low-yield fields

Disadvantages of Disc Mowers

- Cost 25 to 50% more than sickle bar mower
- Require almost twice the power per unit of cutting width
- Makes a poor rock crusher
- May get more dirt and foreign material in hay, e.g., with gopher mounds

Conditioner types

Flail/impellers

Intermeshing Rolls

Operation of Disc Mowers

- Lower repair costs
 - \$250 for disc mower vs \$800 for sickle mower
- Repairs quicker less down time
- Operators could cut almost twice as fast
- Could cut at least two hours earlier when dew
- Could cut grass and sudangrass better than sickle mower

Disc Mower Summary

- No effect of mower type on alfalfa yield or stand
- Lower repair costs for disc mower
- Wider range of operating conditions
- Greater cost

Monitor and adjust conditioner roller spacing

Factors Reducing Forage Quality

Ash content

- Ash provides minerals to the diet, but no calories (i.e. energy).
- Takes the place of nutrients on almost a 1:1 basis.
- Ash content above that contained in plant is dirt contamination

TDN= tdNFC + tdCrude Protein + tdFA*2.25 + tdNDF - 7NFC = 0.98 * (100 - [(NDF-NDICP) + CP + EE + Ash])

Ash Content of Forage Samples

- Average internal ash content of alfalfa is 6 to 8%
- Average internal ash content of grass is 5 to 6%
- Remainder of ash is dirt!

Ash Content of Forage Samples, UW Marshfield Lab				
Туре	Statistic	% Ash		
Haylage	Avg	12.3		
	Max	18.0		
	Min	5.7		
Нау	Average	10.3		
	Max	17.6		
	Min	8.8		

Factors Reducing Forage Quality

Ash content

Possible Causes of Higher Levels of Ash in Forages

Dan Undersander-Agronomy © 2019

Possible Causes of Higher Levels of Ash in Forages

Mower knife type Those knives that "pick up hay" better, also pick up more ash

Possible Causes of Higher Levels of Ash in Forages

- Disc mower knives angled
- Forage cut too close to ground
- Windrow lays on ground
- Raking to scrape ground
- Merging swaths/windrows will minimize ash content while improving harvest efficiency

Factors Affecting Drying Rates

Environment

- Weather
 - Temperature
 - Relative humidity
 - Solar radiation
 - Wind speed
 - Rain
- Soil moisture content

Factors affecting forage drying

Environmental or crop variable	Units	Range		Maximum field curing hours difference between
		Min	Max	min and max value)
Solar Radiation	MJ/m²/hr	0.36	3.43	48
Vapor pressure deficit	kPa	0.00	4.48	3.9
Air Temperature	°C	10.00	38.00	3.2
Swath Density	kg DM/m ³	2.35	23.50	7.8
Soil Moisture Content	% dry basis	10.00	25.00	3.2
First day of curing				2.3

Solar insolation (Radiation)

- Solar insolation is solar energy received on a surface in a given time.
- Some solar radiation will be absorbed, the remainder will be reflected.
- > Absorbed solar radiation is converted to increased temperature.
- > Amount of solar energy received is controlled by
 - > the angle of the sun,
 - > the state of the atmosphere,
 - Altitude,
 - geographic location.

Factors Affecting Drying Rates

Environment

- Weather
 - Temperature
 - Relative humidity
 - Solar radiation
 - Wind speed
 - Rain
- Soil moisture content

Management & Equipment

- > Use of weather forecast
- > Time of mowing
- Width of swath
- Raking
- > windrow structure
- > Windrow inversion

Wide swath benefits

Faster dryingHigher forage quality

Respiration continues after cutting until plants dries below 60% water

Breakdown of starch and sugars

2-8% of Dry Matter loss

Boundary Layer effect

Need Vapor Pressure Deficit and/or Wind to reduce

Relative humidity inside windrow

Dan Undersander-Agronomy © 2019

Leaf Structure

Legumes have 10 times more stomata than grasses

Wide swath benefits

Faster dryingHigher forage quality

Narrow windrow

Need to dry off first 15% moisture as quickly as possible

Wide Swath

Mowing without conditioning for Haylage

- Less expensive
- Less energy to operate
- Faster mowing

RESULTS

- Alfalfa hay moisture was unaffected by conditioner type in first cutting.
- The "super conditioner" reduced hay moisture significantly over the standard conditioner in third cutting.
- The 60-in wide swath allowed hay to dry faster than the 48-in wide swath during first cutting.
 - Yield = 4 tons/acre
- But swath width was not significant in third

cutting.

Dan Undersander-Agronomy © 2019

Wide Swath

Dan Undersander-Agronomy © 2019

Summary

Lose first 15% water as quickly as possible

- Begin with wide swath (>70% of cut area).
- Conditioning necessary for hay not haylage.
- Condition alfalfa & alfalfa/grass mixtures with roller conditioner.
- Rake/merge with minimal ground contact to reduce dirt in forage.
- Additional tedding often necessary for grasses

Mowing/conditioning summary

Lose first 15% water as quickly as possible

- Begin with wide swath (>70% of cut area).
- Conditioning necessary for hay not haylage.
- Condition alfalfa & alfalfa/grass mixtures with roller conditioner.

Dan Undersander-Agronomy © 2019